Abstract

Recent in vitro work using purified enzymes demonstrated that nicotine and/or a nicotine metabolite could inhibit CYPs (CYP2A6, 2A13, 2E1) involved in the metabolism of the genotoxic tobacco nitrosamine NNK. This observation raises the possibility of nicotine interaction with the mechanism of NNK bioactivation. Therefore, we hypothesized that nicotine or a nicotine metabolite such as cotinine might contribute to the inhibition of NNK-induced DNA strand breaks by interfering with CYP enzymes. The effect of nicotine and cotinine on DNA strand breaks was evaluated using the COMET assay in CYP competent HepaRG cells incubated with bioactive CYP-dependent NNK and CYP-independent NNKOAc (4-(acetoxymethylnitrosoamino)-1-(3-pyridyl)-1-butanone). We report a dose-dependent reduction in DNA damage in hepatic-derived cell lines in the presence of nicotine and cotinine. Those results are discussed in the context of the in vitro model selected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.