Abstract

Aluminum (Al) recognized as a persistent environmental contaminant is associated with bone diseases. Nicotinamide mononucleotide (NMN) is an intermediate of nicotinamide adenine dinucleotide (NAD+) biosynthesis widely used to replenish NAD+. Increasing evidences demonstrated that replenishment of NAD+ can protect against bone loss. However, the potentially protective effects of NMN against Al-induced bone impairment and the underlying mechanisms remain unknown. In the present study, we sought to investigate the protective effects of NMN on Al-induced bone damages and elucidate the potential mechanisms. We orally exposed AlCl3 (10 mg/L) to Sprague-Dawley rats in drinking water for 12 weeks while NMN (20 mg/kg) were intraperitoneally injected in last 4 weeks. We found that Al could induce bone damages, bone loss and oxidative stress. In addition, we showed that Al triggered inflammatory responses, which is mediated by the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome activation. However, NMN treatment significantly alleviated Al-induced bone injuries by decreasing bone loss, suppressing oxidative stress as well as inhibiting Thioredoxin-interacting protein (TXNIP)-NLRP3 inflammasome pathway and pro-inflammatory cytokine production in vivo and in vitro. Meanwhile, treatment with TXNIP siRNA performed the same protective effects as NMN in Al-treated MC3T3-E1 cells. Collectively, our results suggest that NMN may reduce Al-induced bone loss partly by suppression of the TXNIP-NLRP3 inflammasome pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call