Abstract
SummaryNicotinamide (NAM) shapes T cell responses but its precise molecular mechanism of action remains elusive. Here, we show that NAM impairs naive T cell effector transition but also effector T cells themselves. Although aerobic glycolysis is a hallmark of activated T cells, CD8+ T cells exposed to NAM displayed enhanced glycolysis, yet producing significantly less IFNγ. Mechanistically, NAM reduced mTORC1 activity independently of NAD+ metabolism, decreasing IFNγ translation and regulating T cell transcriptional factors critical to effector/memory fate. Finally, the role of NAM in a biomedically relevant model of lung injury was tested. Specifically, a NAM-supplemented diet reduced systemic IL-2, antigen-specific T cell clonal expansion, and effector function after inhalation of Staphylococcus aureus enterotoxin A. These findings identify NAM as a potential therapeutic supplement that uncouples glycolysis from effector cytokine production and may be a powerful treatment for diseases associated with T cell hyperactivation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.