Abstract

Nearly one-third of the world population, mostly women and children, suffer from iron malnutrition and its consequences, such as anemia or impaired mental development. Biofortification of rice, which is a staple crop for nearly half of the world's population, can significantly contribute in alleviating iron deficiency. NFP rice (transgenic rice expressing nicotianamine synthase, ferritin and phytase genes) has a more than six-fold increase in iron content in polished rice grains, resulting from the synergistic action of nicotianamine synthase (NAS) and ferritin transgenes. We investigated iron homeostasis in NFP plants by analyzing the expression of 28 endogenous rice genes known to be involved in the homeostasis of iron and other metals, in iron-deficient and iron-sufficient conditions. RNA was collected from different tissues (roots, flag leaves, grains) and at three developmental stages during grain filling. NFP plants showed increased sensitivity to iron-deficiency conditions and changes in the expression of endogenous genes involved in nicotianamine (NA) metabolism, in comparison to their non-transgenic siblings (NTS). Elevated transcript levels were detected in NFP plants for several iron transporters. In contrast, expression of OsYSL2, which encodes a member of yellow stripe like protein family, and a transporter of the NA-Fe(II) complex was reduced in NFP plants under low iron conditions, indicating that expression of OsYSL2 is regulated by the endogenous iron status. Expression of the transgenes did not significantly affect overall iron homeostasis in NFP plants, which establishes the engineered push-pull mechanism as a suitable strategy to increase rice endosperm iron content.

Highlights

  • Iron deficiency anemia (IDA) is the most severe degree of iron deficiency and a global problem that affects an estimated onethird of the world’s population in both developing and developed countries

  • The genes studied included those involved in NA and DMA synthesis, the Yellow stripe like (YSL) transporters, the iron-regulated transporters, genes from zinc-regulated transporter IRT-like proteins (ZIP) family, transcription factors, as well as the inter- and intra-cellular transporters

  • A significant increase of OsDMAS1 expression could be detected in NFP grains at the milky stage in iron-deficient conditions. These results suggest that the genes involved in NA and DMA synthesis are coordinately regulated in NFP plants, which contributed to increased iron uptake and facilitated translocation within these plants

Read more

Summary

Introduction

Iron deficiency anemia (IDA) is the most severe degree of iron deficiency and a global problem that affects an estimated onethird of the world’s population in both developing and developed countries. IDA has major consequences for human health as well as social and economic progress (WHO, 2013). Human IDA could be relieved by iron supplementation or food fortification. Iron supplementation is difficult to achieve due to transportation and economic circumstances, especially in rural areas of developing countries. Iron fortification of food is technically difficult and often results in unacceptable color and flavor of fortified products (Hurrell and Egli, 2010). Bio-fortification has emerged as a possible solution to combat iron deficiency anemia through an economical and natural way

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.