Abstract

Grafting is a plant propagation technique widely used in agriculture. A recent discovery of the capability of interfamily grafting in Nicotiana has expanded the potential combinations of grafting. In this study, we showed that xylem connection is essential for the achievement of interfamily grafting and investigated the molecular basis of xylem formation at the graft junction. Transcriptome and gene network analyses revealed gene modules for tracheary element (TE) formation during grafting that include genes associated with xylem cell differentiation and immune response. The reliability of the drawn network was validated by examining the role of the Nicotiana benthamiana XYLEM CYSTEINE PROTEASE (NbXCP) genes in TE formation during interfamily grafting. Promoter activities of NbXCP1 and NbXCP2 genes were found in differentiating TE cells in the stem and callus tissues at the graft junction. Analysis of a Nbxcp1;Nbxcp2 loss-of-function mutant indicated that NbXCPs control the timing of de novo TE formation at the graft junction. Moreover, grafts of the NbXCP1 overexpressor increased the scion growth rate as well as the fruit size. Thus, we identified gene modules for TE formation at the graft boundary and demonstrated potential ways to enhance Nicotiana interfamily grafting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.