Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating neurodegenerative disease that negatively affects neurotransmission. It can be pathologically mimicked by experimental autoimmune encephalomyelitis (EAE) animal model. ATP-sensitive potassium channels (KATP) plays a crucial role in the control of neuronal damage, however their role in MS are still obscure. Additionally, Carvedilol showed a promising neuroprotective activity against several neurological disorders. Therefore, the present study aimed to investigate the potential neuroprotective effect of KATP channel opener (nicorandil) as well as α and β adrenoceptor antagonist (Carvedilol) against EAE induced neurodegeneration in mice. Mice was treated with nicorandil (6 mg/kg/day; p.o.) and carvedilol (10 mg/kg/day; p.o.) for 14 days. Nicorandil and carvedilol showed improvement in clinical scoring, behaviour and motor coordination as established by histopathological investigation and immunohistochemical detection of MBP. Furthermore, both treatments downregulated the protein expression of TLR4/ MYD88/TRAF6 signalling cascade with downstream inhibition of (pT183/Y185)-JNK/p38 (pT180/Y182)-MAPK axis leading to reduction of neuroinflammatory status, as witnessed by reduction of NF-κB, TNF-α, IL-1β and IL-6 contents. Moreover, nicorandil and carvedilol attenuated oxidative damage by increasing Nrf2 content and SOD activity together with reduction of MDA content. In addition, an immunomodulating effect via inhibiting the gene expression of CD4, TGF-β, and IL-17 as well as TGF-β, IL-17, and IL-23 contents along with anti-apoptotic effect by decreasing Bax protein expression and Caspase-3 content and increasing Bcl-2 protein expression was observed with nicorandil and carvedilol treatments. In conclusion, nicorandil and carvedilol exerted a neuroprotective activity against EAE induced neuronal loss via inhibition of TLR4/MYD88/TRAF6/JNK/p38-MAPK axis besides antioxidant and anti-apoptotic effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.