Abstract

Metal-organic frameworks-through the use of creative synthetic designs-could produce MOF materials with excellent porosity, stability, particle microstructures, and conductivity, and their inherent characteristics-including their porosity and controllable structure-may result in an immense number of prospects for energy storage. In this paper, a nanosphere-like NiCo-MOF was effectively manufactured via an ultra-fast microwave technique. Additionally, the ideal synthesis conditions of the NiCo-MOF were investigated by adjusting the microwave output power and microwave reaction time. Under the reaction conditions of a 600 W microwave and a 210 s microwave reaction time, the NiCo-MOF exhibited an excellent capacitance of 1348 F/g at a current density of 1 A/g and an 86.1% capacity retention rate at 10 A/g. In addition, self-assembled NiCo-MOF/AC asymmetric capacitors showed a splendid energy density of 46.6 Wh/kg and a power density of 8000 W/kg.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call