Abstract

Exploring porous nano-structured materials has great significance for energy storage equipment. The metal-organic frameworks (MOFs) can be used as the outstanding sacrificial templates for electrode material of high performance supercapacitors due to their superior features that high specific surface area and tunable pore size distribution. However, the poor conductivity of MOFs is one of the biggest barriers to achieve high rate capacity and stable cycling performance. Herein, MOFs derived NiCo-layered double-hydroxide (NiCo-LDH) and nitrogen-doped carbon nanosheets (NC) on the flexible carbon nanotubes (CNTs) film are rationally designed, both of which as the binder-free electrodes can greatly improve the specific surface area and reaction sites. An asymmetric supercapacitor based on porous NiCo-LDH nanosheets on CNTs (CNT@NiCo-LDH) as the positive electrode and the NC nanosheets on carbon nanotubes film (CNT@NC) as the negative electrode exhibits the maximum energy density of 37.4 W h/kg at the power density of 750 W/kg, as well as a long-term cycling stability (94.5% capacity retention after 5000 cycles). Rationally design such combination is a meaningful process for energy storage equipment with excellent electrochemical performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call