Abstract

Al2O3-supported monometallic Ni, Co, and bimetallic Ni–Co nanocatalysts originated from layered double hydroxide precursors were synthesized by co-precipitation method, and used for the synthesis of useful 5-amino-1-pentanol (5-AP) and 1,5-pentanediol (1,5-PD) by reductive amination (RA) or direct hydrogenation of biofurfural-derived 2-hydroxytetrahydropyran (2-HTHP), respectively. In both reactions, the yield of the target products decreased monotonously with the increasing amounts of Co in the NiCo/Al2O3 catalysts, owing probably to the replacement of highly reactive Ni by Co component with inferior hydrogenation activity at the low reaction temperature of 60 °C. However, the incorporation of Co could improve the reducibility of the NiCo/Al2O3 bimetallic catalysts and promote the reaction stability of the catalysts, especially for Ni2Co1/Al2O3, in both reactions with over 180 h time-on-stream. Characterization of the catalysts before and after the reaction showed that the incorporating Co could inhibit the sintering of metal particles and hinder the surface oxidation of the more reactive Ni0 species, thanks to the formation of Ni–Co alloy in the bimetallic catalysts. DFT-based modeling of the reaction mechanisms is also performed, supporting the reaction pathway proposed previously and also the much higher activity of Ni in the RA of 2-HTHP as compared with Co.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.