Abstract

DNA strand displacement is widely used in DNA-related nanoengineering for its remarkable specificity and predictability. We report a nicking enzyme-assisted mechanism to regulate strand displacement, where DNA toeholds are dynamically controlled. To demonstrate the strategy, a protein/DNA-based Boolean operation system is constructed and based on it a two-channel multiplexer controlled by three different nicking enzymes is realized. The proposed regulatory mechanism can be used for switch logic statement and bridges protein and DNA logic circuits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call