Abstract

Amyloid fibrils are ordered aggregates that may be formed from disordered, partially unfolded, and fragments of proteins and peptides. There are several diseases, which are due to the formation and deposition of insoluble β-sheet protein aggregates in various tissue, collectively known as amyloidosis. Here, we have used bovine α-lactalbumin as a model protein to understand the mechanism of amyloid fibril formation at pH1.6 and 65°C under non-reducing conditions. Amyloid fibril formation is confirmed by Thioflavin T fluorescence and atomic force microscopy (AFM). Our finding demonstrates that hydrolysis of peptide bonds occurs under these conditions, which results in nicking and fragmentation. The nicking and fragmentation have been confirmed on non-reducing and reducing gel. We have identified the fragments by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The fragmentation may initiate nucleation as it coincides with AFM images. Conformational changes associated with monomer resulting in fibrillation are shown by circular dichroism and Raman spectroscopy. The current study highlights the importance of nicking and fragmentation in amyloid fibril formation, which may help understand the role of acidic pH and proteolysis under in vivo conditions in the initiation of amyloid fibril formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call