Abstract

The direct growth of high-quality, large-area, uniform, vertically stacked Gr/h-BN heterostructures is of vital importance for applications in electronics and optoelectronics. However, the main challenge lies in the catalytically inert nature of the hexagonal boron nitride (h-BN) substrates, which usually afford a rather low decomposition rate of carbon precursors, and thus relatively low growth rate of graphene. Herein, a nickelocene-precursor-facilitated route is developed for the fast growth of Gr/h-BN vertical heterostructures on Cu foils, which shows much improved synthesis efficiency (8-10 times faster) and crystalline quality of graphene (large single-crystalline domain up to ≈20 µm). The key advantage of our synthetic route is the utilization of nickel atoms that are decomposed from nickelocene molecules as the gaseous catalyst, which can decrease the energy barrier for graphene growth and facilitate the decomposition of carbon sources, according to our density functional theory calculations. The high-quality Gr/h-BN stacks are proved to be perfect anode/protecting layers for high-performance organic light-emitting diode devices. In this regard, this work offers a brand-new route for the fast growth of Gr/h-BN heterostructures with practical scalability and high crystalline quality, thus should propel its wide applications in transparent electrodes, high-performance electronic devices, and energy harvesting/transition directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.