Abstract

The fixation of atmospheric CO2 into value-added products is a promising methodology. A series of novel nickel(II) complexes of the type [Ni(L)(CH3 CN)2 ](BPh4 )2 1-5, where L=N,N-bis(2-pyridylmethyl)-N', N'-dimethylpropane-1,3-diamine (L1), N,N-dimethyl-N'-(2-(pyridin-2-yl)ethyl)-N'-(pyridin-2-ylmethyl) propane-1,3-diamine (L2), N,N-bis((4-methoxy-3,5-dimethylpyridin-2-ylmethyl)-N',N'-dimethylpropane-1,3-diamine (L3), N-(2-(dimethylamino) benzyl)-N',N'-dimethyl-N-(pyridin-2-ylmethyl) propane-1,3-diamine (L4) and N,N-bis(2-(dimethylamino)benzyl)-N', N'-dimethylpropane-1,3-diamine (L5) have been synthesized and characterized as the catalysts for the conversion of atmospheric CO2 into organic cyclic carbonates. The single-crystal X-ray structure of 2 was determined and exhibited distorted octahedral coordination geometry with cis-α configuration. The complexes have been used as a catalyst for converting CO2 and epoxides into five-membered cyclic carbonates under 1 atmospheric (atm) pressure at room temperature in the presence of Bu4 NBr. The catalyst containing electron-releasing -Me and -OMe groups afforded the maximum yield of cyclic carbonates, 34% (TON, 680) under 1 atm air. It was drastically enhanced to 89% (TON, 1780) under pure CO2 gas at 1 atm. It is the highest catalytic efficiency known for CO2 fixation using nickel-based catalysts at room temperature and 1 atm pressure. The electronic and steric factors of the ligands strongly influence the catalytic efficiency. Furthermore, all the catalysts can convert a wide range of epoxides (ten examples) into corresponding cyclic carbonate with excellent selectivity (>99%) under this mild condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.