Abstract

AbstractA nickel–copper alloy is prepared by using the oxalate method and subsequent in situ reduction. The bimetallic alloy is mixed with gadolinium‐doped ceria (CGO) to obtain a composite material with mixed electronic–ionic conductivity. The catalytic and electrocatalytic properties of the composite material for ethanol conversion are described. Different conditions to simulate bio‐ethanol feed operation are selected. Electrochemical tests are performed by utilizing the NiCu/CGO cermet as a barrier layer in a conventional anode‐supported solid‐oxide fuel cell (AS‐SOFC). A comparative study between the modified cell and a conventional AS‐SOFC without the protective layer is made. A maximum power density of 277 mW cm−2@0.63 V is recorded in the presence of a mixture of ethanol–water for a cell containing the protective anodic layer compared with 231 mW cm−2@0.64 V for a bare cell under the same conditions. This corresponds to a 20 % increase in performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.