Abstract

Nickel-catalyzed regioselective C–H bond alkenylation of indoles and related heteroarenes with alkenyl bromides is accomplished under relatively mild conditions. This method allows the straightforward synthesis of C-2 alkenylated indoles employing an air-stable and well-defined nickel catalyst, (bpy)NiBr2, providing a solution to the limitations associated with hydroindolation and oxidative alkenylation. The reaction conceded the coupling of indole derivatives with various alkenyl bromides, such as aromatic and heteroaromatics, α- and β-substituted as well as exo- and endo-cyclic alkenyl compounds. An extensive mechanistic investigation, including controlled study, reactivity experiments, kinetics and labeling studies, and EPR and XPS analyses, highlights that the alkenylation proceeds through a single-electron transfer process comprising an odd-electron oxidative addition of alkenyl bromide. Furthermore, the alkenylation operates via a probable Ni(I)/Ni(III) pathway involving the rate-limiting C–H nickel...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.