Abstract

SummaryChiral cyclic sulfamidates are useful building blocks to construct compounds, such as chiral amines, with important applications. Often these compounds can only be generated through expensive precious metal catalysts. Here, Ni(OAc)2/(S, S)-Ph-BPE-catalyzed highly efficient asymmetric hydrogenation of cyclic sulfamidate imines was successfully developed, affording various chiral cyclic sulfamidates with high yields and excellent enantioselectivities (up to 99% yield, >99% enantiomeric excess [ee]). This Ni-catalyzed asymmetric hydrogenation on a gram scale has been achieved with only 0.1 mol% catalyst loading in 99% yield with 93% ee. Other types of N-sulfonyl ketimines were also hydrogenated well to obtain the corresponding products with >99% conversion, 96%–97% yields, and 97%–>99% ee. In addition, this asymmetric methodology could produce other enantioenriched organic molecules, such as chiral β-fluoroamine, amino ether, and phenylglycinol. Moreover, a reasonable catalytic cycle was provided according to the deuterium-labeling studies, which could reveal a possible mechanism for this Ni-catalyzed asymmetric hydrogenation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.