Abstract

In various coating processes nickel-based hard alloy powders are applied in either an atomized or a mechanically pulverized form. The coatings show good corrosion resistance, a high abrasion resistance and a relatively low melting point. Since boron is sparingly soluble in nickel, the boride Ni 3B forms a low melting eutectic at about 1000 °C with the nickel solid solution. Boron and silicon act simultaneously as deoxidizers and improve both the properties of the coating and the bonding to the substrate. Diffusion into the substrate occurs during the coating procedures. In this paper we discuss the behaviour of heterogeneous powder compounds with nickel hard alloys. For many applications mixtures with various carbides are used. During coating, reactions take place between the Ni-Cr matrix and the added carbides. These heterogeneous or quasi-alloys, which are used because of their abrasion resistance, are metastable. The abrasion resistance depends primarily on the phases as well as on their grain size, the grain size distribution and alterations to the matrix. When carbidic quasi-alloys are exposed to abrasion and corrosion at high temperatures, reactions of the existing phases during use cannot be completely excluded. Heat treatment causes changes in the structure and abrasion resistance of carbide-containing quasi-alloys. It is difficult to follow reactions which take place during coating either in the fused mass of quasi-alloys or in heterogeneous compounds. Because of their relatively low melting points nickel-based hard alloys can be coated by furnace melting. Hence carbide compounds with Ni-Cr-B-Si powder alloys are most suitable for research also. In these mechanical alloys segregation, of relevance to practical applications, can be studied as well as the formation of various phases during the coating or heat treatment processes. The behaviour of mixtures of Ni-Cr-B-Si powder alloy with different amounts of a number of carbides is reported. The structures of the resulting phases were studied and we tried to correlate these with the results of our abrasion tests. For tungsten carbide-nickel hard alloy mixtures the formation of the ƞ phase is influenced by the coating parameters and the matrix as well as by the diffusion of iron from the substrate into the coating. We also investigated mixtures of an Ni-Cr-B-Si matrix with TiC (Ti, W)C and NbC. The wear resistance against steel and SiC was measured. Various wear mechanisms and the properties of the carbide-matrix interface the wear results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call