Abstract
AbstractMicrostructural evolution of anode supported solid oxide fuel cells (SOFC) during medium‐term stack testing has been characterised by scanning electron microscopy (SEM). Low acceleration voltage SEM imaging is used to separate the three anode phases (nickel, yttria‐stabilised zirconia and porosity). Microstructural quantification is obtained using a software code that yields phase proportion, particle size, particle size distribution and a direct measure of triple phase boundary (TPB) density (μm–2). In addition, an anode degradation model is proposed. The model describes the gradual degradation of the anode due to nickel particle sintering and the concomitant loss of TPB. Fundamental operational and structural parameters of the anode can be used to estimate the TPB length change with time from the degradation rate. The combination of experimental results and modelling allows separating the degradation due to sintering of nickel particles from total stack degradation. Anode degradation occurs principally during the first 500 operating hours. For stack tests carried out over more than 1,000 h, anode degradation was responsible for 18 to 41% of the total degradation depending on initial microstructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.