Abstract

For use in next-generation energy storage applications, including electric vehicles, capacity and cycle life of lithium ion batteries need further improvement. Moreover, to achieve fast lithiation kinetics of the electrode materials, high power density and quick charging ability are necessary. Nickel vanadate (Ni3V2O8) microsphere with tens of nanocavities is one of candidates for anode materials suitable for lithium ion batteries. The synthesis of microspheres is possible by a pilot-scale spray drying process and facile one-step oxidation heat treatment. Dextrin, which is present in the microspheres after spray drying process, plays a key role in the formation of nanocavities. Oxidation at different temperatures yields carbon composite microspheres with nanocavities and hierarchical Ni3V2O8 microspheres with nanocavities. The nanocavities facilitate electrolyte contact with the electrode material and alleviate volume change during lithiation/delithiation. The merits of the nanocavities in the Ni3V2O8 microspheres enable a high discharge capacity of 1045 mA h g−1 for the 2nd cycle at 1 A g−1 and long cycle life. Furthermore, Ni3V2O8 microspheres deliver a high discharge capacity of 612 mA h g−1 at a high current density of 6 A g−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call