Abstract

Transport of nickel ions was studied in Alcaligenes eutrophus. Two transport systems for nickel ions exist to satisfy the nickel demand for the lithotrophic hydrogen metabolism. A major nickel transport activity exhibited an apparent affinity constant (K m) of 17 μM nickel chloride. This activity was competitively inhibited by Mg2+, Mn2+, Zn2+, and Co2+. A minor nickel transport activity was determined in the presence of high (0.8 mM) magnesium. This activity was not inhibited by Zn2+ or Mn2+; its K′ m was determined to be 0.34 μM nickel chloride. These kinetics suggested a second transport system in A. eutrophus. The membrane potential of A. eutrophus was decreased upon the addition of ammonium ions leading to a decreased nickel transport. This inhibition could be reversed by fructose or by hydrogen indicating an energy dependent nickel transport. Protonophores inhibited the nickel transport. However, inhibitors of ATP synthase like dicyclohexylcabodimide or venturicidin had little or no effect on nickel transport. These data indicated that the transport was coupled to the proton motive force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.