Abstract
Nickel sulfide nanoworm (Ni3S2 NW) network architecture was directly grown on the poly (3,4-ethylenedioxythiophene)-reduced graphene oxide hybrid films (PEDOT-rGO HFs) modified on glassy carbon electrode (GCE), acting as a binder-free sensor for high-performance non-enzymatic glucose monitoring. The sensor exhibited the satisfactory sensitivity (2123μAmM-1cm-2), wide linear range (15~9105μM), low detection limit (0.48μM), and rapid response time (< 1.5s) at a potential of 0.5V (vs. SCE) in 0.1M NaOH and possessed good selectivity, reproducibility, and stability. The enhanced electrocatalytic activity of the sensor towards glucose oxidation was attributed to the particular morphology, satisfying hydrophilic nature, strong combination between Ni3S2 NWs, PEDOT-rGO, and bare GCE. Moreover, it can be used for assaying glucose in human serum samples without dilution, indicating potential for clinical diagnostic applications. Graphical abstract Nickel sulfide nanoworms (Ni3S2 NWs)/poly (3,4-ethylenedioxythiophene)-reduced graphene oxide hybrid films (PEDOT-rGO HFs) were used to construct a binder-free high-performance non-enzymatic glucose sensor with satisfactory sensitivity, wide linear range, low detection limit, good selectivity, amazing reproducibility, and stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.