Abstract

Herein, synthesis, characterization, and catalytic utilization of rather efficient carboxymethyl cellulose-stabilized nickel-rhodium nanoparticles (4.5 ± 0.7 nm) in hydrogen liberation from ammonia borane and hydrazine borane by hydrolysis are reported. The catalysts are prepared by simultaneous reduction of appropriate nickel and rhodium salts in aqueous solution by sodium borohydride by using carboxymethyl cellulose as a stabilizer. Transmission electron microscopy, ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy are used to characterize the catalysts. The catalysts are highly durable and effective to liberate hydrogen from ammonia borane and hydrazine borane in aqueous solution at lower concentrations and temperature. Among prepared catalysts, Ni0.50Rh0.50@CMC provides 200 min−1 and 188 min−1 of average turnover frequencies and 46.8 ± 2 kJ/mol and 60.3 ± 2 kJ/mol of activation energies for ammonia borane and hydrazine borane hydrolysis reactions, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.