Abstract

In Thanh Hoa province, large chromite ore deposits were discovered. These types of ores also contain significant quantity of nickel metal, with total nickel reserves estimated to be over three million tones. According to the practices of mining and beneficiation of these chromite ores, nickel is discarded in the waste dumps as a non-valuable metal and has not been recovered ever. Through many years of mining and processing of chromite ores, large dumps are formed to such huge volumes that can be considered as a significantly secondary resource of valuable nickel metal. Nickel exists in the form of laterite ores so that it is difficult to be recovered. Currently, there is no commercial technology available for recovery of nickel or other valuable metals from this type of raw material sources. This article presents some research results on applying the reduction calcination – magnetic separation process for recovery of nickel. In particular, some important reduction operating variables such as temperature, calcination time, fuel coal ratio, and Na2SO4 additive were investigated. From the tailing samples of the Mau Lam – Thanh Hoa chromite beneficiation process, important optimal reducing conditions have been determined including 1,1000C of reduction temperature, 8% of anthracite coal, 8% of Na2SO4 additive, and the reduction time of 90 minutes. The reduced product was finely grounded and separated at a magnetic field of 0.3T using the wet magnetic separator. At optimal operating variables, the nickel content of the final nickel concentrate was 4.02% Ni and the overall nickel recovery was 91.2%. The positive results necessarily lead to a need to continue researching the possibility of practical application to recover nickel and thus contribute to the rational utilization of mineral resources of the country.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.