Abstract

AbstractAsian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, causes significant yield losses worldwide. Nickel (Ni) plays a key role in the metabolism of some profitable crops, such as soybeans, because it is a constituent of several biomolecules and is required for the catalytic process of several enzymes. This study investigated the effect of foliar Ni treatment on the potentiation of soybean cultivar TMG 135 resistance to P. pachyrhizi infection at the microscopic, biochemical, and molecular levels. The severity of ASR decreased by 35% in plants treated with Ni. The malondialdehyde concentration, an indicator of cellular oxidative damage, was high in the leaves of plants that were not treated with Ni and was linked to ASR severity and the extensive colonization of the palisade and spongy parenchyma cells by fungal hyphae. The lignin concentration, β‐1,3‐glucanase activity, and expression of the URE gene and the defence‐related genes PAL1.1, PAL2.1, CHI1B1, and PR‐1A were up‐regulated in Ni‐treated plants infected with P. pachyrhizi. The information provided by this study shows the great potential of Ni to increase the basal level of soybean resistance to ASR and to complement other control methods within the context of sustainable agriculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call