Abstract

Magnetic circular dichroism (MCD) spectroscopy and variable-temperature variable-field MCD are used in combination with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations to characterize the so-called ox1-silent, red1, and ox1 forms of the Ni-containing cofactor F430 in methyl-coenzyme M reductase (MCR). Previous studies concluded that the ox1 state, which is the precursor of the key reactive red1 state of MCR, is a Ni(I) species that derives from one-electron reduction of the Ni(II)-containing ox1-silent state. However, our absorption and MCD data provide compelling evidence that ox1 is actually a Ni(II) species. In support of this proposal, our DFT and TD-DFT calculations indicate that addition of an electron to the ox1-silent state leads to formation of a hydrocorphin anion radical rather than a Ni(I) center. These results and biochemical evidence suggest that ox1 is more oxidized than red1, which prompted us to test a new model for ox1 in which the ox1-silent species is oxidized by one electron to form a thiyl radical derived from coenzyme M that couples antiferromagnetically to the Ni(II) ion. This alternative ox1 model, formally corresponding to a Ni(III)/thiolate resonance form but with predicted S = 1/2 EPR parameters reminiscent of a Ni(I) (3dx2-y2)1 species, rationalizes the requirement for reduction of ox1 to yield the red1 species and the seemingly incongruent EPR and electronic spectra of the ox1 state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call