Abstract

Developing cheap, abundant, and easily available electrocatalysts to drive the hydrogen evolution reaction (HER) at small overpotentials is an urgent demand of hydrogen production from water splitting. Molybdenum disulfide (MoS2 ) based composites have emerged as competitive electrocatalysts for HER in recent years. Herein, nickel@nitrogen-doped carbon@MoS2 nanosheets (Ni@NC@MoS2 ) hybrid sub-microspheres are presented as HER catalyst. MoS2 nanosheets with expanded interlayer spacings are vertically grown on nickel@nitrogen-doped carbon (Ni@NC) substrate to form Ni@NC@MoS2 hierarchical sub-microspheres by a simple hydrothermal process. The formed Ni@NC@MoS2 composites display excellent electrocatalytic activity for HER with an onset overpotential of 18 mV, a low overpotential of 82 mV at 10 mA cm-2 , a small Tafel slope of 47.5 mV dec-1 , and high durability in 0.5 H2 SO4 solution. The outstanding HER performance of the Ni@NC@MoS2 catalyst can be ascribed to the synergistic effect of dense catalytic sites on MoS2 nanosheets with exposed edges and expanded interlayer spacings, and the rapid electron transfer from Ni@NC substrate to MoS2 nanosheets. The excellent Ni@NC@MoS2 electrocatalyst promises potential application in practical hydrogen production, and the strategy reported here can also be extended to grow MoS2 on other nitrogen-doped carbon encapsulated metal species for various applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.