Abstract

In this work, we report the building of a nanostructured platform with activity towards the non-enzymatic oxidation of ethanol. This nanostructured platform was obtained by including Ni nanowires (NiNWs) in a graphite matrix composite. The NiNWs were obtained by electrochemical synthesis using commercial aluminum oxide templates and characterized by scanning electronic microscopy (SEM), X-ray emission (EDS) and X-ray diffraction (XRD). The composite transducer (CPE-NiNWs) was studied by cyclic voltammetry, amperometry and electrochemical impedance spectroscopy (EIS) assays. CPE-NiNWs proved to be highly sensitive for the detection of ethanol in 0.10 M NaOH, demonstrating a wide linear range (1.0 × 10−4–1.1 × 10−2 M) and a detection limit of 3.10 × 10−7 M. CPE-NiNWs was used for the efficient quantification of ethanol in distilled alcoholic beverages, obtaining results comparable to those reported by the manufacturers. The operational conditions of CPE-NiNWs were accomplished in terms of the best analytical performance for non-enzymatic quantification of ethanol. CPE-NiNWs demonstrated a very good short-term stability (for 5 successive determinations using the same surface), proving an outstanding long-term stability, allowing its use for at least 60 days.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call