Abstract

A single-step electrochemical procedure to synthesize a brush-like platform, which composed of a nickel nanowire array attached to a nickel continuous layer acting as a solid base, is described. Room temperature hysteresis properties of this brush-like architecture (nanobrush) and those of the individual components (nanowires and layer) are determined. It is shown that the direction of the nanobrush magnetic easy axis may be tailored, being also possible to control the magnetic system's coercivity and remanence. The electrochemical response and the catalytic activity of a Ni nanobrush towards the redox probes [Fe(CN) 6 ] 4-/3- and ethanol were evaluated in the presence and absence of an applied magnetic field. The external field strongly affects the system's behavior by enhancing the electrode charge-transfer response, even at fields as low as 6 mT. This improvement was further investigated by Electrochemical Impedance Spectroscopy and Electrochemical Capacitance Spectroscopy studies. It is concluded that the enhanced electrochemical charge-transfer process of the Ni nanobrush electrode, with a magnetic field applied along the Ni nanowires axis, arises from a larger electroactive area. • A Ni nanobrush electrode is obtained by a single step electrodeposition route. • Nanobrush architecture consists of Ni NWs perpendicularly attached to a Ni layer. • The whole platform easy axis orientation is controlled by the brush shape and crystalline texture. • Catalytic activity towards redox probes Fe(CN) 6 −4/−3 and ethanol are evaluated. • A small magnetic field drastically reduces the nanobrush impedance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.