Abstract
Discharge of emerging contaminants such as parabens in natural water bodies is a grievous concern. Among parabens, methylparaben (MP) is most prevalent due to its extensive usage in personal care and food products and has been purported to trigger hormonal-related diseases. In this regard, the bio-electro-Fenton (BEF) process garners attention for remediating refractory compounds because of its ability to generate in situ hydroxyl radicals (•OH) utilising the energy harvested from electroactive microorganisms. In the present investigation, a Ni–Fe-driven heterogenous BEF system (BEF-MFC) was used to degrade MP from different matrices. At neutral catholyte pH, 99.54 ± 0.22% of MP was removed from an initial concentration of 10 mg/L in 240 min of retention time with an estimated treatment cost of about 1.01 $/m3. The removal rate ameliorated when the catholyte pH was dropped to 3.0 and by imposing an external voltage of 0.5 V, requiring just 120 min to achieve comparable MP removal efficiencies. However, catalyst leaching was higher at acidic pH (leaching of Fe ions = 0.44 mg/L and Ni ions = 0.06 mg/L) and applying external voltage increased the treatment cost slightly to 1.08 $/m3. Further, treatment of 10 mg/L MP-spiked real wastewater at pH of 7.0 with the BEF-MFC attained 85.70 ± 3.30% and 56.50 ± 1.70% reduction in MP and total organic carbon, respectively, in 240 min. In addition, a maximum power density of 205.90 ± 2.27 mW/cm2 was harvested in the BEF-MFC; thus, portraying the dual benefit of Ni–Fe heterogeneous catalyst. Even though, Ni–Fe performed reasonably well as Fenton-cum-cathode catalyst, future endeavours should be poised to fine-tune catalysts to accelerate H2O2 and •OH generation, which will reinforce the scalability of this system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.