Abstract
Iron–alumina-supported nickel–iron alloy catalysts were tested in a fixed-bed reactor for steam reforming of toluene as a biomass tar model compound. The influence of the calcination temperature of the iron–alumina support was also explored for the steam reforming reaction. Ni supported on an Fe2O3–Al2O3 support calcined at 500 °C [NFA(500)] gave superior catalytic performance in terms of activity and stability over other catalysts. NFA(500) gave a toluene conversion of more than 90% for a period of 26 h with a H2/CO value of 4.5. According to XRD analysis, the Ni–Fe alloys were formed and stable throughout the reforming reaction. It was observed from XPS results that the surface of the reduced NFA(500) catalyst was enriched with Fe species, where the other catalysts were enriched with Ni species. These surface Fe species play the role of cocatalysts by increasing the coverage of oxygen species during the reforming reaction to enhance the reaction of toluene and suppresses coke formation. The presence of ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.