Abstract

Nickel (Ni) ions easily elute from many alloys and elicit inflammation and allergies. Previous studies have shown that infections due to the implantation of medical devices cause inflammation and enhance the elution of Ni ions (Ni2+). However, cross-talk between infection- and Ni2+-induced signaling pathways has not yet been elucidated in detail. In the present study, we investigated the effects of Ni2+ on the lipopolysaccharide (LPS)-induced production of cytokines in a LPS-induced air pouch-type inflammation model in BALB/c mice and the murine macrophage cell line RAW264. We demonstrated that Ni2+ inhibited the LPS-induced production of interleukin (IL)-6, but not that of tumor necrosis factor (TNF)-α both in vivo and in vitro. This inhibitory effect was also observed with cobalt ion (Co2+), but not with chloride ion (Cl-), zinc ion (Zn2+), or palladium ion (Pd2+), and was highly selective to the production of IL-6. Ni2+ did not inhibit the activation of ERK1/2, p38 MAPK, or JNK. Although Ni2+ decreased IL-6 mRNA levels, it failed to inhibit the LPS-induced activation of the IL-6 promoter. An experiment using actinomycin D, a transcription inhibitor, revealed that Ni2+ decreased the stability of IL-6 mRNA. Moreover, Ni2+ inhibited the LPS-induced expression of Arid5a, but not regnase-1. These results demonstrated that Ni2+ may have selectively inhibited the LPS-induced production of IL-6 by decreasing the Arid5a-dependent stabilization of IL-6 mRNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.