Abstract

Many investigations have shown that nickel exposure can induce micronuclei generation, inhibit DNA repair and induce cell apoptosis, both in cells and tissues. However, there is a lack of appropriate in vivo animal models to study the underlying mechanisms of nickel-induced apoptosis. The model organism, Caenorhabditis elegans, has been shown to be a good model for investigating many biological processes. In the present study, we detected 0.01 mM nickel induced significantly germline cell apoptosis after treatment for 12 hours, which demonstrated that C. elegans could be a mammalian in vivo substitute model to study the mechanisms of apoptosis. Then gene knockout C. elegans strains were utilized to investigate the relationship between nickel-induced apoptosis and relevant signal pathways, which were involved in DNA damage and repair, apoptosis regulation and damage signal transduction. The results presented here demonstrated that nickel-induced apoptosis was independent of the DNA damage response gene, such as hus-1, p53/cep-1 and egl-1. The loss-of-function of the genes that related to Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPK) signaling cascades suppressed nickel-induced germline apoptosis, while ERK signaling cascades have no effects on the nickel-induced germline apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.