Abstract

A facile strategy was developed here to improve the film quality of nickel-based hole transporting layer (HTL) for efficient organic solar cell (OSC) applications. To prevent the agglomeration of Ni(NO3 )2 during film deposition, acetylacetonate was added into the precursor solution, which led to the formation of an amorphous and glass-like state. After thermal annealing (TA) treatment, the film-forming ability could be further improved. The additional UV-ozone (UVO) treatment continuously improved the film quality and increased the work function and conductivity of such HTL. The resulting TA & UVO modified Ni(NO3 )2 & Hacac HTL produced highly efficient organic solar cells with exciting power conversion efficiencies of 18.42 % and 19.02 % for PM6 : BTP-eC9 and D18 : BTP-Th devices, respectively, much higher than the control PEDOT : PSS devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.