Abstract

This article reports the synthesis and characterization of four Ni(II) Schiff base complexes, [Ni(L)(H2O)], where H2L = N-(dehydroacetic acid)-thiosemicarbazide (H2dha-tsc), N-(dehydroacetic acid)-4-methyl-3-thiosemicarbazide (H2dha-mtsc), N-(dehydroacetic acid)-4-phenyl-3-thiosemicarbazide (H2dha-ptsc), or N-(dehydroacetic acid)-4-phenylsemicarbazide (H2dha-psc). The nature of bonding and stereochemistry of these complexes have been deduced from elemental analysis, infrared and electronic spectral studies, molar conductance, magnetic measurements, mass spectrometry, thermogravimetric analysis, 1H NMR and 13C NMR studies, and cyclic voltammetry. The stabilities of the complexes were determined in both solid state and solution. Molecular geometry optimizations and vibrational frequency calculations were performed with Gaussian 09 software package using density functional theory (DFT) with B3LYP/6-311G for a ligand (dha-ptscH2) and B3LYP/LANL2DZ combination for [Ni(dha-mtsc)(H2O)]. Based on the combined experimental and theoretical studies, square planar geometry has been proposed for the Ni(II) complexes. The Schiff base ligands and their metal complexes were screened for antibacterial activities against gram-negative bacteria (Escherichia coli ) at different concentrations to get their minimum inhibition concentration values. The bactericidal activity was enhanced in metal complexes as compared to free ligands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.