Catalysis science & technology | VOL. 12
Read
Nickel foam supported porous copper oxide catalysts with noble metal-like activity for aqueous phase reactions.
Abstract
Contiguous metal foams offer a multitude of advantages over conventional powders as supports for nanostructured heterogeneous catalysts; most critically a preformed 3-D porous framework ensuring full directional coverage of supported catalyst, and intrinsic ease of handling and recyclability. Nonetheless, metal foams remain comparatively underused in thermal catalysis compared to more conventional supports such as amorphous carbon, metal oxides, zeolites and more recently MOFs. Herein, we demonstrate a facile preparation of highly-reactive, robust, and easy to handle Ni foam-supported Cu-based metal catalysts. The highly sustainable synthesis requires no specialized equipment, no surfactants or additive redox reagents, uses water as solvent, and CuCl2(H2O)2 as precursor. The resulting material seeds as well-separated micro-crystalline Cu2(OH)3Cl evenly covering the Ni foam. Calcination above 400 °C transforms the Cu2(OH)3Cl to highly porous CuO. All materials display promising activity towards the reduction of 4-nitrophenol and methyl orange. Notably, our leading CuO-based material displays 4-nitrophenol reduction activity comparable with very reactive precious-metal based systems. Recyclability studies highlight the intrinsic ease of handling for the Ni foam support, and our results point to a very robust, highly recyclable catalyst system.
Concepts
Ni Foam Support Foam Support 4-nitrophenol Reduction Supports For Heterogeneous Catalysts Ni Foam Metal Foams Conventional Powders Methyl Orange Amorphous Carbon Specialized Reagents
Introducing Weekly Round-ups!Beta
Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.
Climate change Research Articles published between Jan 16, 2023 to Jan 22, 2023
Carbon capture and utilization (CCU) is an emerging technology with commercial potential to convert atmospheric carbon dioxide (CO2) into net zero or ...
Read MoreQuality Of Education Research Articles published between Jan 16, 2023 to Jan 22, 2023
Introduction: The Educational Scholar Program (ESP) is a creative method to focus on the quality of education and the scholarship of education. The ed...
Read MoreGender Equality Research Articles published between Jan 16, 2023 to Jan 22, 2023
This study deviates from the predominantly feminist/critical school of thought associated with existing gender studies to apply an interpretivist appr...
Read MoreDisclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.