Abstract

The commercialization of lithium sulfur batteries have so far hindered by the low electrochemical utilization and rapid capacity fading of sulfur cathode, which is induced by low electron conductivity and high dissolution of intermediate polysulfides. Recent studies have shown that the metal (Pt, Au, Ni) as electrocatalyst of lithium polysulfides and its metallic porous nanostructure can suppress the shuttle effect. In this work, we use the porous nanostructure of nickel fibers/sulfur as-designed composite cathode material for lithium sulfur batteries. The initial discharge capacity of the cathode with the added 3(%) nickel fibers was 805mAhg−1, and the remaining capacity was 440mAhg−1 after 50 cycles at 0.766mAcm−2. Even at a high current density of 1.532mAcm−2, it also kept a high discharge capacity of 310mAhg−1. Compared with pure sulfur electrodes, the electrodes containing nickel fibers showed an obviously improved cycle and rate performances, confirming that metallic porous nanostructure of nickel can not only contribute to reducing the dissolution of polysulfides into electrolytes, but also has a catalytic effect on the redox reactions during charge-discharge process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.