Abstract
An ideal cathode for proton ceramic fuel cell (PCFC) should have superior oxygen reduction reaction activity, high proton conductivity, good chemical compatibility with electrolyte and sufficient stability, thus rational design of the electrode material is needed. Here, by taking advantage of the limited solubility of nickel in perovskite lattice, we propose a new dual phase cathode developed based on nickel doping manipulation strategy. We rationally design a perovskite precursor with the nominal composition of Ba(Co0.4Fe0.4Zr0.1Y0.1)0.8Ni0.2O3−δ (BCFZYN0.2). During high temperature calcination, a nanocomposite, composed of a B-site cation deficient and nickel-doped BCFZY perovskite main phase and nanosized NiO minor phase, is formed. The NiO nanoparticles effectively improve the surface oxygen exchange kinetics and the B-site cation deficiency structure enhances proton conductivity, thus leading to superior ORR activity of BCFZYN0.2. Furthermore, a low thermal expansion coefficient (15.3 × 10–6 K−1) is achieved, ensuring good thermomechanical compatibility the electrolyte. A peak power density of 860 mW cm−2 at 600 °C is obtained from the corresponding PCFC, and the cell operates stably for 200 h without any significant degradation. The proposing strategy, by providing a new opportunity for the development of highly active and durable PCFC cathodes, may accelerate the practical use of this technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.