Abstract

Breast cancer cell-derived exosomes have high potential as biomarkers for continuous biopsies and longitudinal monitoring in breast cancer. However, it is extremely difficult to separate exosomes with high recovery and high purity from complex media, such as urine, plasma, saliva and cell culture supernatants. Here, we designed a flexible and simple microfluidic chip for exosome separation. The capture zone of the chip is a three-dimensional structure of interlaced cylinders doped with nickel powder. Exosomes were separated from cell culture supernatant by the immunomagnetic separation method in continuous flow mode and were detected by fluorescence imaging with high sensitivity. The chip achieved a high exosome recovery rate (> 74%) and purity (> 67%) at an injection rate of 3.6 mL/h. Thus, this chip was demonstrated to be a cutting-edge platform for the separation and detection of exosomes. It could also be applied to separate and detect other types of exosomes, microbubbles and cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.