Abstract

AbstractLow degradation is a key feature for a successful commercialization of solid oxide fuel cell (SOFC) systems. A variety of degradation mechanisms influences the overall degradation rate. Nickel depletion, agglomeration and coarsening in anodes during operation are considered as an important degradation mechanism. In this work, the microstructure of SOFC anodes of electrolyte‐supported cells with operation times up to 20,000 hours (850 °C) were analyzed. The examined anodes consist of a porous cermet of nickel and gadolinium doped ceria. Scanning electron microscopy (SEM) and energy‐dispersive X‐ray (EDX) analysis were used to investigate the nickel distribution in the anode. The results show nickel depletion at the electrolyte/anode interface, which becomes more noticeable for increased operation time. In addition, nickel agglomeration in the contact layer and in the functional layer was found. A relationship between nickel agglomeration and depletion was deduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.