Abstract

Core-shell structured carbon nanofiber@metal oxide is one of the most promising hybrid electrodes as supercapacitors, in which the pseudocapacitive metal oxides can be fully exerted and stabilized on the carbonaceous scaffolds. However, facile fabrication of mesoporous carbon nanofibers and integration of them with metal oxides are challenging. Herein, we report a new type of mesoporous carbon nanofibers (MCNs), derived from zinc-trimesic acid fibers, acting as the scaffolds to anchor nickel cobaltite (NiCo2O4) nanosheets after surface O-functionalization. The resultant core-shell OMCN@NiCo2O4 nanostructure is demonstrated by scanning electron microscope (SEM), elemental mapping, bright-field/high-resolution transmission electron microscope (TEM), selected area electron diffraction (SAED) studies. The anchored NiCo2O4 nanosheets are dense (97.4%), and have a strong interaction with OMCN, as revealed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and H2-temperature programmed reduction (H2-TPR) techniques. As expected, the OMCN@NiCo2O4 is highly efficient, showing a high specific capacitance of 1631 F g–1 at the current density of 1 A g–1, excellent rate capability and superior cycling stability up to 5000 cycles within a high capacitance retention ratio of 94.5%. This research opens the avenue to fabricate high-efficiency carbon-metal oxide electrodes using metal-organic framework fiber-derived mesoporous carbon nanofibers and integration of them with NiCo2O4 nanosheets by increasing the interfacial interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.