Abstract

Nanolayered structures present significantly enhanced electrochemical performance by facilitating the surface-dependent electrochemical reaction processes for supercapacitors, which, however, causes capacitance fade upon cycling due to their poor chemical stability. In this work, we report a simple and effective approach to develop a stable, high performance electrode material by integrating 2D transition metal hydroxide and reduced graphene oxide sheets at nanometer scale. Specifically, a hybrid nanolayer of Ni-Co hydroxide @reduced graphene oxide (Ni,Co-OH/rGO) with an average thickness of 1.37 nm is synthesized through an easy one-pot hydrothermal method. Benefiting from the face to face contact model between Ni-Co hydroxide and rGO sheets, such unique structure presents superior specific capacitance and cycling performance as compared to the pure Ni-Co hydroxide nanolayers. An asymmetric supercapacitor based on Ni,Co-OH/rGO and three-dimensional (3D) hierarchical porous carbon is developed, exhibiting a high energy density of 56.1 Wh kg(-1) along with remarkable cycling stability (80% retention after 17 000 cycles), which holds great promise for practical applications in energy storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.