Abstract

ABSTRACTUsing spin-polarised density functional theory calculation single-walled carbon nanotube (SWCNT) whose sidewall is functionalised with nickel cluster is studied for its possible application in CO molecule sensing. We have chosen (6,0) SWCNT functionalised with Ni13 cluster as the model for nanotube-cluster system. Changes in the properties of nanotube-cluster system brought by the CO molecule are reported. The CO molecule binding is energetically more favourable to the nanotube-cluster system than the pristine nanotube. The electronic properties are investigated in terms of density of states and bandstructure calculations. Pristine carbon nanotubes are intrinsically non-magnetic but nanotubes functionalised with nickel cluster are observed to have a huge magnetic moment which reduced on adsorbing CO molecule. The change in magnetisation upon CO adsorption may be detected using a suitable magnetometer. This result suggests the possibility of using carbon nanotube-cluster system to detect CO molecules. Bader charge analysis shows that CO molecule withdraws electronic charge from the cluster atoms. Nature of chemical bonding is studied with crystal orbital Hamilton population (–COHP) analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.