Abstract

The traditional methods for the synthesis of phosphinate esters use phosphorus trichloride (PCl3) as the phosphorous source, resulting in procedures that are often highly polluting and energy intensive. The search for an alternative approach that is both mild and environmentally friendly is a challenging, yet highly rewarding task in modern chemistry. Herein, we use an inorganic phosphorous-containing species, NaH2PO2, to serve as the source of phosphorous that participates directly in the nickel-catalyzed selective alkyne hydrophosphonylation reaction. The transformation was achieved in a multicomponent fashion and at room temperature, and most importantly, the H-phosphinate product generated is an advanced intermediate which can be readily converted into diverse phosphinate derivatives, including those bearing new P-C, P-S, P-N, P-Se, and P-O bonds, thus providing a complimentary method to classic phosphinate ester synthesis techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.