Abstract
A comparative experimental and computational study examining the interplay of the ancillary ligand structure and Ni oxidation state in the Ni-catalyzed C(sp2)-O cross-coupling of (hetero)aryl chlorides and primary or secondary aliphatic alcohols is presented, focusing on PAd-DalPhos (L1)-, CyPAd-DalPhos (L2)-, PAd2-DalPhos (L3)-, and DPPF (L4)-ligated [(L)NiCl]n (n = 1 or 2) and (L)Ni(o-tol)Cl precatalysts. Both L1 and L2 were found to outperform the other ligands examined, with the latter proving to be superior overall. While Ni(II) precatalysts generally outperformed Ni(I) species, in some instances the catalytic abilities of Ni(I) precatalysts were competitive with those of Ni(II). Density-functional theory calculations indicate the favorability of a Ni(0)/Ni(II) catalytic cycle featuring turnover-limiting C-O bond reductive elimination over a Ni(I)/Ni(III) cycle involving turnover-limiting C-Cl oxidative addition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.