Abstract

Kinetic resolution is a powerful strategy for the isolation of enantioenriched compounds from racemic mixtures, and the development of selective catalytic processes is an active area of research. Here, we present a nickel-catalyzed kinetic resolution of racemic α-substituted unconjugated carbonyl alkenes via the enantio-, diastereo-, and regioselective hydroamination. This protocol affords both chiral α-substituted butenamides and syn-β2,3 -amino acid derivatives with high enantiomeric purity (up to 99 % ee) and selectivity factor up to >684. The key to the excellent kinetic resolution efficiency is the distinctive architecture of the chiral nickel complex, which enables successful resolution and enantioselective C-N bond construction. Mechanistic investigations reveal that the unique structure of the chiral ligand facilitates a rapid migratory insertion step with one enantiomer. This strategy provides a practical and versatile approach to prepare a wide range of chiral compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call