Abstract

Chemodivergent (de)hydrogenative coupling of primary and secondary alcohols is achieved utilizing an inexpensive nickel catalyst, (6-OH-bpy)NiCl2 . This protocol demonstrates the synthesis of branched carbonyl compounds, α,α-disubstituted ketones, and α-substituted chalcones via borrowing hydrogen strategy and acceptorless dehydrogenative coupling, respectively. A wide range of aryl-based secondary alcohols are coupled with various primary alcohols in this tandem dehydrogenation/hydrogenation reaction. The nickel catalyst, along with KOt Bu or K2 CO3 , governed the selectivity for the formation of branched saturated ketones or chalcones. A preliminary mechanistic investigation confirms the reversible dehydrogenation of alcohols to carbonyls via metal-ligand cooperation (MLC) and the involvement of radical intermediates during the reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call