Abstract

Atomic layer deposition is employed to install nickel oxide into NU-1000. Upon heating to 900 °C under nitrogen, a carbon material containing ZrO2 and Ni is formed. In notable contrast to the parent metal-organic framework, the pyrolyzed material is: (a) stable in highly alkaline solutions (typical conditions for water electro-oxidation) and (b) electrically conductive and thus able to deliver oxidizing equivalents (holes) to catalytic sites located far from the underlying conductive-glass electrode. The pyrolysis-derived material was characterized and its electrocatalytic activity for oxygen evolution was investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.