Abstract

Borolides (BC42-) can be considered as dianionic heterocyclic analogues of monoanionic cyclopentadienides. Although both are formally six-π-electron donors, we herein demonstrate that the electronic structure of their corresponding transition metal complexes differs significantly, leading to altered properties. Specifically, the 18-electron sandwich complex Ni(iPr2NBC4Ph2)2 (1) features an ∼90° angle between the Ni-B-N planes and is best described as a combination of three limiting resonance structures with the major contribution stemming from a formally Ni2+ species bound to two monoanionic radical (BC4•-) ligands. Compound 1 displays two sequential one-electron oxidation events over a small potential range of <0.2 V, which strikingly contrasts the large potential separations between redox partners in the family of metallocenes, and the potential reasons for this unusual observation are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.