Abstract

The persistently increasing energy consumption and the low abundance of conventional fuels have raised serious concerns all over the world. Thus, the development of technology for clean-energy production has become the major research priority worldwide. The globalization of advanced energy conversion technologies like rechargeable metal–air batteries, regenerated fuel cells, and water-splitting devices has been majorly benefitted by the development of apposite catalytic materials that can proficiently carry out the pertinent electrochemical processes like oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and water hydrolysis. Despite a handful of superbly performing commercial catalysts, the high cost and low electrochemical stability of precursors have consistently discouraged their long-term viability. As a promising substitute of conventional platinum-, palladium-, iridium-, gold-, silver-, and ruthenium-based catalysts, various transition-metal (TM) i...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.