Abstract

The texturing of silicon surfaces is a well-known method of reducing the reflection from the surface of crystalline Si solar cell devices. With the utilization of diamond wires in recent advances in wafer slicing technology, surface texturing for the multi-crystalline Si wafers by the traditional acid-based texturing technique has become difficult. Metal-Assisted Etching (MAE) has been shown to be a promising and low-cost alternative to the traditional acid-based isotropic texturing. This paper reports, for the first time, a new single-step Ni-assisted etching technique to obtain nano-scale porous structures, that is, black silicon on multi-crystalline wafers. We observed lower reflection results in comparison with standard isotropic texturing using a standard acid solution. The structural and optical properties of the surface were identified through reflection measurements and scanning electron microscopy imaging. As a final step, the optimized texturing process was applied to multi-crystalline solar cell devices and showed promising results regarding cell performance parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.